suppressPackageStartupMessages({
library(mapview)
library(here)
library(sf)
library(terra)
})Polygons
This tutorial explore how to handle spatial polygons in R with terra package:
- read a spatial object with (
terra::vect())
- calculate length of lines with (
terra::perim()) - calculate distances between points and lines with (
terra::distance())
In which type of habitats were the otter observed? To answer this question, we will need to discover another type of spatial vector: polygons.
Setup
Follow the setup instructions if you haven’t followed the tutorial on points
If haven’t done it already, please follow the setup instructions. Let’s start with loading the required packages.
pt_otter <- vect(here("data", "gbif_otter_2021_mpl50km.gpkg"))pt_otter <- vect(
"https://github.com/FRBCesab/spatial-r/raw/main/data/gbif_otter_2021_mpl50km.gpkg"
)Load polygons from a shapefile
In this example, we will load land cover information for the area of interest from IGN data BD CARTO.
Note that this dataset has rough resolution (OSO or Corine land cover would be more suited for real analysis), but it’s perfect for our illustration and learning purposes.
You can load all vector dataset in R with the function terra::vect().
landuse <- vect(here("data", "BDCARTO-LULC_mpl50km.shp"))landuse_sf <- st_read(here("data", "BDCARTO-LULC_mpl50km.shp"))Reading layer `BDCARTO-LULC_mpl50km' from data source
`/home/romain/GitHub/spatial-r/data/BDCARTO-LULC_mpl50km.shp'
using driver `ESRI Shapefile'
Simple feature collection with 2910 features and 3 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 3.18983 ymin: 43.20373 xmax: 4.56447 ymax: 44.16754
Geodetic CRS: WGS 84
landuse <- vect(
"https://github.com/FRBCesab/spatial-r/raw/refs/heads/main/data/BDCARTO-LULC_mpl50km.shp"
)- How many different polygons make the land cover of the area?
- What is the coordinate reference system (CRS) of the loaded river data?
- How many land cover classes are there? which class has most polygons?
Click to see the answer
- There was
2910polygons in the dataset. You can access it withdim(landuse),nrow(landuse)or just by typinglandusein the console.
- The coordinates are in
WGS 84(EPSG4326). You can access this information withcrs(landuse, describe = TRUE)(or insfwithst_crs(landuse_sf)). - The column that stored the cover classes is
nature. You could identify it withhead(landuse)ornames(landuse). There are12land cover classes,Prairieis the class with most polygons (table(landuse$nature)).
Visualization
mapview(landuse, z = "nature") +
mapview(pt_otter, col.regions = "black")plot(landuse, y = "nature", border = NA)
plot(pt_otter, add = TRUE)
plot(landuse_sf["nature"], reset = FALSE, border = FALSE, axes = TRUE)
plot(pt_otter, add = TRUE, pch = 16)
If you want to overlay multiple spatial object with base plot from sf, don’t forget to use the argument reset=FALSE.
Calculate the area
The function expanse calculate the area in \(m^2\). When calculating areas, be careful with projection systems. Some are not suited to calculate areas. Prefer equalarea projections or use local projection system (if your study area is small).
The package terra recommends the calculation of areas in lat/long to get more accurate results (accounting for Earth’s curvature). The package sf handle lat/long with s2 which is not very accurate or prone to errors.
So it is recommended to use terra when dealing with geographic coordinates, or projecting the coordinates in an appropriate projection system.
# calculate the area in ha
area_polygons <- expanse(landuse) * 0.0001
# store the area as atribute
landuse$area_ha <- as.numeric(area_polygons)For sf, it is recommended to project the dataset to a local projection, such as the Universal Transverse Mercator defined for Europe (EPSG:25832).
# 25832 is a commun projection for France
landuse_25832 <- st_transform(landuse_sf, crs = 25832)
# calculate area of polygons
area_polygons <- st_area(landuse_25832) * 0.0001
# store as attribute in landuse
landuse_25832$area_ha <- as.numeric(area_polygons)- Which is the largest land cover class in our study area? Why?
- Remove the Mediterranean from the land cover dataset (hint: it is the largest polygon).
- Calculate the percentage of terrestrial land cover in the study area.
Click to see the answer
# see area per land use classes
tapply(landuse$area_ha, landuse$nature, sum) Bâti Broussailles Carrière, décharge Eau libre
55654.39730 97923.34835 1916.22618 272561.76875
Forêt Marais salant Marais, tourbière Prairie
278134.18692 3455.79520 29467.47117 206833.73332
Rocher, éboulis Sable, gravier Vigne, verger Zone d'activités
37.78454 2353.14638 206514.68518 15224.16350
Click to see the answer 2
# the largest polygon correspond to the mediterranean
landuse$nature[which.max(landuse$area_ha)][1] "Eau libre"
# remove the largest polygon
landuse_nomed <- landuse[-which.max(landuse$area_ha), ]
# verify the operation
plot(landuse_nomed, y = "nature", border = NA)
Click to see the answer 3
cover_ha <- tapply(landuse_nomed$area_ha, landuse_nomed$nature, sum)
# percentage of land cover classes in the terrestrial study area
cover_perc <- cover_ha / sum(cover_ha) * 100
#show rounded values
round(cover_perc, 2) Bâti Broussailles Carrière, décharge Eau libre
5.98 10.52 0.21 3.61
Forêt Marais salant Marais, tourbière Prairie
29.87 0.37 3.16 22.21
Rocher, éboulis Sable, gravier Vigne, verger Zone d'activités
0.00 0.25 22.18 1.64
Points to polygons
Before making extraction, it is recommended to plot the data (if not too big), to make sure the projection systems are the same and the extents match. Do not use mapview (interactive map) because it will automatically project the data.
Extract the land cover class of the points with terra::extract():
pt_landcover <- extract(landuse, pt_otter)Extract the land cover class of the points with sf::st_join():
pt_landcover <- st_join(st_as_sf(pt_otter), landuse_sf)# see area per land use classes of the observations
table(pt_landcover$nature)
Bâti Broussailles Eau libre Forêt
8 17 1 29
Marais, tourbière Prairie Vigne, verger
3 16 9
- [stat] Which classes are over or under represented compare to expected? (to complex?)
Click to see the answer
# see area per land use classes of the observations
cover_obs_perc <- table(pt_landcover$nature) / nrow(pt_landcover) * 100
# add missing classes
m0 <- match(names(cover_perc), names(cover_obs_perc))
cover <- data.frame(
class = names(cover_perc),
all = as.numeric(cover_perc),
obs = as.numeric(cover_obs_perc[m0])
)
cover[is.na(cover)] <- 0
cover$delta <- cover$obs - cover$all
barplot(cover$delta, horiz = TRUE, names = cover$class, las = 1)
Polygons to polygons
In many cases, we want to characterize the area surrounding the observations. So we will create buffers.
Create buffer
We can create buffer with terra::buffer().
dist_buffer <- 1000 # buffer of 1000 m
poly_otter <- buffer(pt_otter, dist_buffer)Same here, sf uses s2 with geographic coordinates (e.g. EPSG:4326) which creates buffers with low quality (as in sf 1.0-21 on 03/11/2025).
So it is recommended to use projected coordinates with sf::st_buffer().
dist_buffer <- 1000 # buffer of 1000 m
# transform as UTM : better for area
pt_otter_25832 <- st_as_sf(pt_otter) |> st_transform(25832)
poly_otter_25832 <- st_buffer(pt_otter_25832, dist_buffer)Visualize buffer
plot(poly_otter[1])
plot(pt_otter[1], add = TRUE)
plot(st_geometry(poly_otter_25832)[1], reset = FALSE, axes = TRUE)
plot(st_geometry(pt_otter_25832)[1], add = TRUE)
- What are the areas of the newly created buffers?
Click to see the answer
# see area per land use classes of the observations
summary(expanse(poly_otter)) Min. 1st Qu. Median Mean 3rd Qu. Max.
3128689 3128689 3128689 3128689 3128689 3128689
# for sf
summary(st_area(poly_otter_25832)) Min. 1st Qu. Median Mean 3rd Qu. Max.
3140157 3140157 3140157 3140157 3140157 3140157
3.1415927\times 10^{6} is due to the way the circle is defined (in only 40 points in terra and 120 points in sf). But what is more important is that all buffers have the same area.
Intersection
buffer_landcover <- intersect(landuse, poly_otter)
# visualize the intersection (not plotted to lighten the webpage)
# mapview(buffer_landcover, z = "nature")
# show a zoom on the land cover of the first buffer
plot(
buffer_landcover[buffer_landcover$key %in% poly_otter$key[1]],
y = "nature"
)
buffer_landcover_sf <- st_intersection(poly_otter_25832, landuse_25832)Warning: attribute variables are assumed to be spatially constant throughout
all geometries
# visualize the intersection (not plotted to lighten the webpage)
# mapview(buffer_landcover, z = "nature")Land cover per buffer
We need to recalculate the area of the intersected land cover.
buffer_landcover$area_ha <- expanse(buffer_landcover) * 0.0001
# Calculate area per buffer and nature class
class_area <- tapply(
buffer_landcover$area_ha,
list(buffer_landcover$key, buffer_landcover$nature),
sum
)
#replace NA by 0
class_area[is.na(class_area)] <- 0
# calculate the overlay area
sum_area <- rowSums(class_area)
# calculate the percentage per class
perc_class <- class_area / sum_area * 100
barplot(apply(perc_class, 2, mean), las = 2)